
Review of Graph Algorithms on GPU using
CUDA Architecture

Trupti R. Desale

Student, Computer Engg. Department, MCOERC Nashik

Pune University, India

Abstract— In many practical applications include image
processing, space searching, network analysis, graph
partitioning etc. in that graphs structure are used to store data
with involving millions of vertices. Graph algorithms are
fundamental tools in this fields. Hence efficient graph
processing is must for application performance. In ordered to
increase the efficiency, Graphics Processing Unit (GPU) has
been adopted to accelerate graph processing. This device can
be treated as an array of Single Instruction Multiple Data
(SIMD) processors using CUDA software interface by Nvidia.
CUDA device has Massively Multithreaded architecture which
makes various threads to run in parallel and hence available
computation power of GPU optimally used . Various systems
applies parallel algorithm with the use of GPU to accelerate
application. Here mainly focus on BFS and Floyd-warshall
graph algorithms. BFS algorithm run in parallel approach
with different way in that parallelism achieved though vertex,
queue are used to store result. Floyd-Warshall algorithm are
used to find shortest path between all pair of vertices. Parallel
Shortest path Algorithm is developed using block in GPU.
Framework are used for graph processing having sequential
interference. In this paper, I have focused on papers by
various authors for various parallel methods carried out on
GPU by using its multithreaded architecture for BFS & APSP
.

Keywords — GPU, BFS, Floyd-warshall agorithm, CUDA.

I. INTRODUCTION

A. Graphs Needs Large Performance Improvement.

Graph processing is one of the integrative and important
research area. Graphs are used as data structure in many
application such as social networking, Chemistry, image
processing, graph partitioning, data mining etc. In this
algorithm developer s apply a series of operations on graph
edges and vertices to get final result. The operation can be
breadth first search(BFS), page rank, shortest path etc. For
such graph operations, a sequential methods are available
but it is not much efficient with respect to computing time.
It is essential to have faster execution such graph operation
to reduce complexity of problem. To get high performance
of entire system it must require the efficiency of graph
processing.

Here studied different parallel methods for graph
operations on GPU using CUDA architecture.

B. COMPUTE UNIFIED DEVICE ARCHITECTURE
(CUDA)

GPU stands for graphics processing unit which provides
high computation power with low cost. They have multiple
cores with very high memory bandwidth. For managing and
issuing computations on GPU as parallel computing device
needs Compute Unified Device Architecture (CUDA).
nVIDIA developed CUDA architecture which use for only
nVIDIA GPU.

Hardware Model of CUDA Architecture
CUDA Device is collection of various multiprocessors

processors each (figure 1). Each multiprocessor works like
a Single Instruction, Multiple Data architecture (SIMD).
Each multiprocessor has shared memory that memory can
accessible only processors which are inside a that
multiprocessors. The processors within multiprocessors
have set of 32-bit registers, texture and constant memory
caches. Texture and constant caches are read only cached
memory space and texture cache is optimized for texture
fetching operations.

Fig 1: CUDA Hardware Model

Trupti R. Desale / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 519-521

www.ijcsit.com 519

Programming Model of CUDA architecture
A CUDA program is organized into a host program,

consisting of one or more parallel kernels that are suitable
for execution on a parallel processing device like the
GPU.As a software interface, CUDA API can be defined as
a set of library functions, which could be coded as an
extension of the C language. Executable code for the
CUDA device generated by a compiler.

Fig 2: CUDA Software Model

II. SEQUENCE GRAPH PROCESSING

Sequential fundamental graph algorithms are exist in
fast implementation having of number order of vertices and
edges. But, for very large graphs, this kind of algorithms
becomes impractical. Then, Parallel algorithms are used, for
the achieving basic graph operations within practical times
but for that required high hardware cost. Bader et al.[1] in
this use CRAY supercomputer to perform BFS and single
pair shortest path on very large graphs. While using CRAY
supercomputer for graph processing this method is fast, but
very expensive hardware are used. Venkataraman et al[2].
proposed Floyd’s all-pairs shortest-path algorithm in that
used more complex blocked versionbto better utilize the
cache for large graphs and achieved a speedup of 1.6 and
1.9 over unblocked basic implementation.

III. PARALLEL APPROACHES FOR BREADTH-FIRST SEARCH

The Breadth first search (BFS) has number of
applications in different areas. These include image
processing, space searching, network analysis, graph
partitioning, automatic theorem proving etc. The BFS
problem is, given an undirected, unweighted graph G(V,E)
and a it has source vertex S, the BFS aims to find out the
minimum number of edges required to reach each vertex V
in G from source vertex S. The best time complexity
reported for sequential algorithm is O(V+E).

A cost effective parallel platform provided by using
graphics hardware to solve many general problems. Many
problems are benefited from GPU in speed and parallel

processing. Harish and Narayanan proposed accelerate
large graph algorithm using CUDA[3]. This method is
capable of handling large graphs, unlike previous GPU
implementation. Here in BFS, give one thread to every
vertex. Frontier and visited, F and X respectively and also
integer array, cost, c stores the minimum count of edges of
every vertex from the source vertex S. each vertex looks at
frontier array if true, then update the cost c of its and
neighbors. But some cases like scale free graphs BFS works
slower because of the large degree at few vertices, loop
inside the kernel which causes the more lookups to device
memory and slowing down the kernel execution time.

Vibhav et al. [4] their BFS implementation used vertex
compaction process with the help of prefix sum i.e. assign
threads only for active vertices. For removing unnecessary
threads vertex compaction process is very useful. At
particular time,small number of vertices may be active.
They carried out experiments on various types of graphs
and compared the results with the best sequential
implementation of BFS and experiment shows lower
performance on low degree graphs. Lijuan luo[5] they
proposed effective GPU implementation of Breadth-First
Search. They used a hierarchical technique to efficiently
implemented a queue structure on the GPU. To reduce
synchronization overhead they used a hierarchical kernel
arrangement. Their experimental result shows it has same
computational complexity as fastest CPU version and
achieved up to 10 times speedup.

Hong, kim they implemented a novel wrap-centric [6]
programming method that reduces the inefficiency in an
intuitive but effective way that exposes the traits of
underlying GPU architecture to users. Their experimental
result showed significant speedup against pervious studied
GPU implementations as well as a multithreaded CPUs.

IV. PARALLEL APPROACHES FOR ALL PAIR SHORTEST PATH

In all pairs shortest path problem (APSP), given an
weighted graph G(V, E, W) with positive weights, and that
aim is to find out least minimum weighted path from each
& every vertex to every other vertex. Floyd-Warshall’s, the
well known APSP algorithm.

Micikelvicius[7] proposed to solve all pair shortest path
using graphics hardware. In that unique distance matrix
entry corresponded to each pixel, so to perform Floyd-
warshall algorithm used fragment shader. But this algorithm
can not work on large graph.

The Harish and Narayanan[3] proposed graph algorithm
that is Floyd-warshall’s all pair shortest path algorithm
requires O() time and O() space. Here used a
adjacency matrix for graphs and Floyd warshall algorithm
implemented using O(V) threads, each running a loop same
size inside it. This approach is slower because of sequential
access of entire vertex array by every thread. Other
approach is to running single source path to every vertex.
This methods require O(V) threads where Floyd warshall’s
algorithm require O() threads and which creates extra
overheads for context switching for threads.

Gary J. Katz and Joseph T. Kider proposed all pair
shortest path for large graph[8]. Here graph size problem

Trupti R. Desale / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 519-521

www.ijcsit.com 520

due to memory availability is solved. Their approach
handles graph size larger than GPU on board available
memory this achieved through breaking the graphs into
blocks. Convert into blocks in nontrivial on-chip shared
memory cache to increase the performance in efficient
manner. The algorithm is implemented by blocked
formulation. The basic idea for implemented algorithm is
revise original Floyd warshall algorithm into a
hierarchically parallel methods which can be distributed
across on GPU with multiple processors. Matrix is divided
into sub blocks with equal size then processed. This
implementation of algorithm provides 60-130x speedup
over a standard CPU solution O(). 45-100x speedup to
blocked CPU implementation that specified by
Venkataraman et al. [2] also this methods provides speedup
of 5.0-6.5x compared to standard GPU implementation [3]

V. IMPLEMENTATION OF GRAPH ALGORITHM USING

FRAMEWORK

Sungpack Hong and Hassan Chafi [9] proposed Green-
Marl, a domain-specific language (DSL) in that allow
developers to construct their graph analysis algorithms
using high level language. But in a Green-Marl in the
algorithm must expose the data-level parallelism inherent.
also present Green-Marl compiler in which translation of
high-level algorithmic described in Green-Marl into an
efficient C++ implementation by exploitation of this
exposed data level parallelism.

jianlong Zhong and bingsheng he proposed a software
framework named Medusa[10] to simplify programming
graph processing algorithms on the GPU. Medusa
framework provide sequential interference to developer. It
provide six device code APIs for developer to write GPU
graph processing algorithm. Medusa hides a GPU specific
programming details with a small set of system provided
APIs. Medusa front end automatically transforms definition
device code APIs and user defined data structure into
compatible CUDA kernels. Medusa storage component
allow developers to initialize the graph structure through
the use of system APIs like AddEdge and AddVertex then
Medusa runtime component which is responsible for
executing the user-defined APIs in parallel on GPU. This
Medusa BFS implementation having difference in wrap-
centric[6] method, the Medusa applies L threads to vertex
has L edges, while wrap-centric methods applies a virtual
wrap to vertex. This results, Medusa incurs more memory
accesses. Their experimental result shows that On large
diameter graphthe performance of Medusa-based algorithm
is reduced than that of basic implementation.

VI. CONCLUSIONS

In the paper presented review of the graph algorithms like
BFS, APSP those are implemented using CUDA on GPU in
parallel approach .It is very important to use efficient data
structure for storing the input graph and the results of the
algorithms,. Form the overview of the algorithm and
experimental result it shows that the for large graph, GPU
implementation achieves very great speed up over CPU
implementation. There is different way to implement graph
algorithm though the use of multithreading. It is very
important how programmers make optimum use of
multithreading that can be possible on CUDA device which
improve the performance of algorithm. GPU has memory
hierarchy though the use of different memory that can
optimized graph processing in future will be work on.

ACKNOWLEDGMENT

The author wish to thank Matoshri college of Engineering
and Research Centre Nasik, HOD of computer department,
guide and parents for supporting and motivating for this
work because without their blessing this was not possible.

REFERENCES
[1] A. Bader and Kamesh Madduri. Parallel algorithms for evaluating

centrality indices in real-world networks. In ICPP ’06: Proceedings
of the 2006 International Conference on Parallel Processing, pages
539–550, Washington, DC, USA, 2006. IEEE Computer Society.

[2] VENKATARAMAN G., SAHNI S., MUKHOPADHYAYA S.: A
blocked all-pairs shortest-paths algorithm. J. Exp. Algorithmics 8
(2003), 2.2.

[3] P. Harish and P.J. Narayanan, Accelerating Large Graph Algorithms
on the GPU Using CUDA, in Proc. HiPC, 2007, pp. 197-208.

[4] Vibhav Vineet and P. J. Narayanan, 2009 “Large graph algorithms
for massively multithreaded architecture”

[5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed
digital- L. Luo, M. Wong, and W.-M. Hwu, An Effective GPU
Implementation of Breadth-First Search, in Proc. DAC, 2010, pp.
52-55.to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

[6] S. Hong, S.K. Kim, T. Oguntebi, and K. Olukotun, Accelerating
CUDA Graph Algorithms at Maximum Warp, in Proc. PPoPP, 2011,
pp. 267-276M. Shell. (2002) IEEEtran homepage on CTAN.
[Online].
Available:http://www.ctan.org/texarchive/macros/latex/contrib/supp
orted/IEEEtran/

[7] MICIKEVICIUS P.: General parallel computation on commodity
graphics hardware: Case study with the al lpairs shortest paths
problem. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications,
PDPTA ’04, June 21-24,2004, Las Vegas, Nevada, USA, Volume 3
(2004), CSREA Press, pp. 1359–1365.

[8] G.J. Katz and J.T. Kider Jr., All-Pairs Shortest-Paths for Large
Graphs on the GPU, in Proc. Graph. Hardware, 2008, pp. 47-55.

[9] S. Hong, H. Cha_, E. Sedlar, and K. Olukotun, Green-Marl: A DSL
for Easy and Efficient Graph Analysis, in Proc. ASPLOS, London,
U.K., 2012, pp. 349-362.

[10] Jianlong Zhong and Bingsheng He,"Medusa: Simpli_ed Graph
Processing on GPUs".IEEE Transaction on parallel and distributed
system, Vol. 25, NO. 6, JUNE 2014

Trupti R. Desale / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 519-521

www.ijcsit.com 521

